Affiliation:
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology , Kunming 650500 , China
2. Yunnan Key Laboratory of the Solar physics and Space Science , Kunming 650216 , China
3. Yunnan Observatories, Chinese Academy of Sciences , Kunming 650216 , China
Abstract
ABSTRACT
The long-term prediction of the solar cycle is of great significance for aerospace, communication, and space missions. For a long time, many studies have used relatively primitive deep learning methods to predict the solar cycle, and most of them do not perform well in the long-term prediction. In this paper, we proposed XG-SN ensemble model. The model used extreme gradient boosting (XGBoost) ensemble learning method, combined with sample convolution and interaction net (SCINet), and neural basis expansion analysis for the interpretable time series (N-BEATS) to make predictions for known solar cycles. 13 months of smoothed monthly total sunspot numbers were selected as the data set. The model performance was evaluated by mean absolute error (MAE), root-mean-square error (RMSE), and mean absolute time lag (MATL) between the predicted and actual values. The first two evaluation metrics measured the prediction deviation from the numerical dimension, and the last one measured the prediction deviation from the temporal dimension. The results show that the model achieves the MAE, RMSE, and MATL values of 13.19, 17.13, and 0.08, respectively, in Solar Cycle 13 to 24. Our model is able to better predict in most cycles, ensuring accurate prediction of peaks with little time lag.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献