An observational testbed for cosmological zoom-in simulations: constraining stellar migration in the solar cylinder using asteroseismology

Author:

Verma Kuldeep1ORCID,Grand Robert J J2ORCID,Silva Aguirre Víctor1,Stokholm Amalie1ORCID

Affiliation:

1. Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

2. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching, Germany

Abstract

ABSTRACT Large-scale stellar surveys coupled with recent developments in magneto-hydrodynamical simulations of the formation of Milky Way-mass galaxies provide an unparalleled opportunity to unveil the physical processes driving the evolution of the Galaxy. We developed a framework to compare a variety of parameters with their corresponding predictions from simulations in an unbiased manner, taking into account the selection function of a stellar survey. We applied this framework to a sample of over 7000 stars with asteroseismic, spectroscopic, and astrometric data available, together with six simulations from the Auriga project. We found that some simulations are able to produce abundance dichotomies in the [Fe/H]−[α/Fe] plane which look qualitatively similar to observations. The peak of their velocity distributions match the observed data reasonably well; however, they predict hotter kinematics in terms of the tails of the distributions and the vertical velocity dispersion. Assuming our simulation sample is representative of Milky Way-like galaxies, we put upper limits of 2.21 and 3.70 kpc on radial migration for young (<4 Gyr) and old (∈[4, 8] Gyr) stellar populations in the solar cylinder. Comparison between the observed and simulated metallicity dispersion as a function of age further constrains migration to about 1.97 and 2.91 kpc for the young and old populations. These results demonstrate the power of our technique to compare numerical simulations with high-dimensional data sets, and paves the way for using the wider field TESS asteroseismic data together with the future generations of simulations to constrain the sub-grid models for turbulence, star formation, and feedback processes.

Funder

Danish National Research Foundation

Independent Research Fund Denmark

Carlsberg Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3