The accretion rates and mechanisms of Herbig Ae/Be stars

Author:

Wichittanakom C12,Oudmaijer R D2,Fairlamb J R3ORCID,Mendigutía I4ORCID,Vioque M2,Ababakr K M5

Affiliation:

1. Department of Physics, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand

2. School of Physics and Astronomy, EC Stoner Building, University of Leeds, Leeds LS2 9JT, UK

3. Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu HI 96822, USA

4. Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, ESA-ESAC Campus, PO Box 78, E-28691 Villanueva de la Cañada, Madrid, Spain

5. Erbil Polytechnic University, Kirkuk Road, 44001, Erbil, Iraq

Abstract

ABSTRACT This work presents a spectroscopic study of 163 Herbig Ae/Be stars. Amongst these, we present new data for 30 objects. Stellar parameters such as temperature, reddening, mass, luminosity, and age are homogeneously determined. Mass accretion rates are determined from $\rm H\alpha$ emission line measurements. Our data is complemented with the X-Shooter sample from previous studies and we update results using Gaia DR2 parallaxes giving a total of 78 objects with homogeneously determined stellar parameters and mass accretion rates. In addition, mass accretion rates of an additional 85 HAeBes are determined. We confirm previous findings that the mass accretion rate increases as a function of stellar mass, and the existence of a different slope for lower and higher mass stars, respectively. The mass where the slope changes is determined tobe $3.98^{+1.37}_{-0.94}\, \rm M_{\odot }$. We discuss this break in the context of different modes of disc accretion for low- and high-mass stars. Because of their similarities with T Tauri stars, we identify the accretion mechanism for the late-type Herbig stars with the Magnetospheric Accretion. The possibilities for the earlier-type stars are still open, we suggest the Boundary Layer accretion model may be a viable alternative. Finally, we investigated themass accretion–age relationship. Even using the superior Gaia based data, it proved hard to select a large enough sub-sample to remove the mass dependence in this relationship. Yet, it would appear that the mass accretion does decline with age as expected from basic theoretical considerations.

Funder

MSCA

European Space Agency

NASA

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3