A machine learning approach to correct for mass resolution effects in simulated halo clustering statistics

Author:

Forero-Sánchez Daniel1ORCID,Chuang Chia-Hsun23ORCID,Rodríguez-Torres Sergio4,Yepes Gustavo4ORCID,Gottlöber Stefan5,Zhao Cheng1ORCID

Affiliation:

1. Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland

2. Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA

3. Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA

4. Departamento de Física Teórica and CIAFF, Módulo 8, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

5. Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

Abstract

ABSTRACT The increase in the observed volume in cosmological surveys imposes various challenges on simulation preparations. First, the volume of the simulations required increases proportionally to the observations. However, large-volume simulations are quickly becoming computationally intractable. Secondly, on-going and future large-volume survey are targeting smaller objects, e.g. emission line galaxies, compared to the earlier focus, i.e. luminous red galaxies. They require the simulations to have higher mass resolutions. In this work, we present a machine learning (ML) approach to calibrate the halo catalogue of a low-resolution (LR) simulation by training with a paired high-resolution (HR) simulation with the same background white noise, thus we can build the training data by matching HR haloes to LR haloes in a one-to-one fashion. After training, the calibrated LR halo catalogue reproduces the mass–clustering relation for mass down to 2.5 × 1011 h−1 M⊙ within 5 per cent at scales $k\lt 1\,h\, \rm Mpc^{-1}$. We validate the performance of different statistics including halo mass function, power spectrum, two-point correlation function, and bispectrum in both real and redshift space. Our approach generates HR-like halo catalogues (>200 particles per halo) from LR catalogues (>25 particles per halo) containing corrected halo masses for each object. This allows to bypass the computational burden of a large-volume real high-resolution simulation without much compromise in the mass resolution of the result. The cost of our ML approach (∼1 CPU-h) is negligible compared to the cost of a N-body simulation (e.g. millions of CPU-h), The required computing time is cut a factor of 8.

Funder

Bavarian Academy of Sciences and Humanities

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DESI mock challenge;Astronomy & Astrophysics;2023-05

2. Euclid: Cosmological forecasts from the void size function;Astronomy & Astrophysics;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3