An upper limit for the growth of inner planets?

Author:

Winter Andrew J1ORCID,Alexander Richard2ORCID

Affiliation:

1. Institut für Theoretische Astrophysik, Zentrum für Astronomie, Heidelberg University, Albert Ueberle Str. 2, D-69120 Heidelberg, Germany

2. School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

Abstract

ABSTRACT The exotic range of known planetary systems has provoked an equally exotic range of physical explanations for their diverse architectures. However, constraining formation processes requires mapping the observed exoplanet population to that which initially formed in the protoplanetary disc. Numerous results suggest that (internal or external) dynamical perturbation alters the architectures of some exoplanetary systems. Isolating planets that have evolved without any perturbation can help constrain formation processes. We consider the Kepler multiples, which have low mutual inclinations and are unlikely to have been dynamically perturbed. We apply an adaption of previous modelling efforts, accounting for the two-dimensionality of the radius ($R_\mathrm{pl} =0.3\!-\!20\, R_\oplus$) and period (Porb = 0.5–730 d) distribution. We find that an upper limit in planet mass of the form $M_\mathrm{lim} \propto a_\mathrm{pl}^{\beta } \exp (-a_\mathrm{in}/a_\mathrm{pl})$, for semimajor axis apl and a broad range of ain and β, can reproduce a distribution of Porb, Rpl that is indistinguishable from the observed distribution by our comparison metric. The index is consistent with β = 1.5, expected if growth is limited by accretion within the Hill radius. This model is favoured over models assuming a separable PDF in Porb, Rpl. The limit, extrapolated to longer periods, is coincident with the orbits of RV-discovered planets (apl > 0.2 au, $M_\mathrm{pl}\gt 1\, M_\mathrm{J}$) around recently identified low density host stars, hinting at isolation mass limited growth. We discuss the necessary circumstances for a coincidental age-related bias as the origin of this result; such a bias is possible but unlikely. We conclude that, in light of the evidence suggesting that some planetary systems have been dynamically perturbed, simple models for planet growth during the formation stage are worth revisiting.

Funder

Alexander von Humboldt-Stiftung

European Research Council

Horizon 2020 Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3