A multi-instrument investigation of the frequency stability of oscillations above the acoustic cut-off frequency with solar activity

Author:

Kosak K1,Kiefer R12ORCID,Broomhall A-M1

Affiliation:

1. CFSA, Physics Department, University of Warwick , Coventry CV4 7AL, UK

2. Leibniz-Institut für Sonnenphysik (KIS) , Schöneckstraße 6, D-79104 Freiburg, Germany

Abstract

ABSTRACT Below the acoustic cut-off frequency, oscillations are trapped within the solar interior and become resonant. However, signatures of oscillations persist above the acoustic cut-off frequency, and these travelling waves are known as pseudo-modes. Acoustic oscillation frequencies are known to be correlated with the solar cycle, but the pseudo-mode frequencies are predicted to vary in antiphase. We have studied the variation in pseudo-mode frequencies with time systematically through the solar cycle. We analysed Sun-as-a-star data from Variability of Solar Irradiance and Gravity Oscillations (VIRGO), and Global Oscillations at Low Frequencies (GOLF), as well as the decomposed data from Global Oscillation Network (GONG) for harmonic degrees 0 ≤ l ≤ 200. The data cover over two solar cycles (1996–2021, depending on instrument). We split them into overlapping 100-d long segments and focused on two frequency ranges, namely 5600–$6800\, \rm \mu Hz$ and 5600–$7800\, \rm \mu Hz$. The frequency shifts between segments were then obtained by fitting the cross-correlation function between the segments’ periodograms. For VIRGO and GOLF, we found no significant variation of pseudo-mode frequencies with solar activity. However, in agreement with previous studies, we found that the pseudo-mode frequency variations are in antiphase with the solar cycle for GONG data. Furthermore, the pseudo-mode frequency shifts showed a double-peak feature at their maximum, which corresponds to solar activity minimum, and is not seen in solar activity proxies. An, as yet unexplained, pseudo-periodicity in the amplitude of the variation with harmonic degree l is also observed in the GONG data.

Funder

Science and Technology Facilities Council

National Science Foundation

National Oceanic and Atmospheric Administration

National Aeronautics and Space Administration

United States Air Force

ESA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of the photospheric cut-off on the p-mode frequency stability;Monthly Notices of the Royal Astronomical Society;2024-08-22

2. Stellar Activity Cycles;Space Science Reviews;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3