Gravitational imaging through a triple source plane lens: revisiting the ΛCDM-defying dark subhalo in SDSSJ0946+1006

Author:

Ballard Daniel J1ORCID,Enzi Wolfgang J R1,Collett Thomas E1ORCID,Turner Hannah C2ORCID,Smith Russell J2ORCID

Affiliation:

1. Institute of Cosmology and Gravitation, University of Portsmouth , Burnaby Road, Portsmouth, PO1 3FX , UK

2. Centre for Extragalactic Astronomy, Durham University , South Road, Durham, DH1 3LE , UK

Abstract

ABSTRACT The ΛCDM paradigm successfully explains the large-scale structure of the Universe, but is less well constrained on subgalactic scales. Gravitational lens modelling has been used to measure the imprints of dark substructures on lensed arcs, testing the small-scale predictions of ΛCDM. However, the methods required for these tests are subject to degeneracies among the lens mass model and the source light profile. We present a case study of the unique compound gravitational lens SDSSJ0946+1006, wherein a dark, massive substructure has been detected, whose reported high concentration would be unlikely in a ΛCDM universe. For the first time, we model the first two background sources in both I- and U-band HST imaging, as well as VLT-MUSE emission line data for the most distant source. We recover a lensing perturber at a 5.9σ confidence level with mass $\log _{10}(M_\mathrm{sub}/{\rm M}_{\odot })=9.2^{+0.4}_{-0.1}$ and concentration $\log _{10}c=2.4^{+0.5}_{-0.3}$. The concentration is more consistent with CDM subhaloes than previously reported, and the mass is compatible with that of a dwarf satellite galaxy whose flux is undetectable in the data at the location of the perturber. A wandering black hole with mass $\log _{10}(M_\mathrm{BH}/{\rm M}_{\odot })=8.9^{+0.2}_{-0.1}$ is a viable alternative model. We systematically investigate alternative assumptions about the complexity of the mass distribution and source reconstruction; in all cases the subhalo is detected at around the ≥5σ level. However, the detection significance can be altered substantially (up to 11.3σ) by alternative choices for the source regularization scheme.

Funder

STFC

Royal Society

European Research Council

Horizon 2020

BEIS

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3