From hydrogen to helium: the spectral evolution of white dwarfs as evidence for convective mixing

Author:

Cunningham Tim1,Tremblay Pier-Emmanuel1,Gentile Fusillo Nicola Pietro1,Hollands Mark1,Cukanovaite Elena1

Affiliation:

1. Department of Physics, University of Warwick, Coventry CV4 7AL, UK

Abstract

ABSTRACT We present a study of the hypothesis that white dwarfs undergo a spectral change from hydrogen- to helium-dominated atmospheres using a volume-limited photometric sample drawn from the Gaia-DR2 catalogue, the Sloan Digital Sky Survey (SDSS), and the Galaxy Evolution Explorer (GALEX). We exploit the strength of the Balmer jump in hydrogen-atmosphere DA white dwarfs to separate them from helium-dominated objects in SDSS colour space. Across the effective temperature range from 20 000 to 9000 K, we find that 22 per cent of white dwarfs will undergo a spectral change, with no spectral evolution being ruled out at 5σ. The most likely explanation is that the increase in He-rich objects is caused by the convective mixing of DA stars with thin hydrogen layers, in which helium is dredged up from deeper layers by a surface hydrogen convection zone. The rate of change in the fraction of He-rich objects as a function of temperature, coupled with a recent grid of 3D radiation-hydrodynamic simulations of convective DA white dwarfs – which include the full overshoot region – lead to a discussion on the distribution of total hydrogen mass in white dwarfs. We find that 60 per cent of white dwarfs must have a hydrogen mass larger than MH/MWD = 10−10, another 25 per cent have masses in the range MH/MWD = 10−14–10−10, and 15 per cent have less hydrogen than MH/MWD = 10−14. These results have implications for white dwarf asteroseismology, stellar evolution through the asymptotic giant branch and accretion of planetesimals on to white dwarfs.

Funder

European Space Agency

Alfred P. Sloan Foundation

National Science Foundation

U.S. Department of Energy

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3