A machine learning approach to photometric metallicities of giant stars

Author:

Fallows Connor P1,Sanders Jason L1ORCID

Affiliation:

1. "Department of Physics & Astronomy, University College London , Gower St., London WC1E 6BT, UK

Abstract

ABSTRACT Despite the advances provided by large-scale photometric surveys, stellar features – such as metallicity – generally remain limited to spectroscopic observations often of bright, nearby low-extinction stars. To rectify this, we present a neural network approach for estimating the metallicities and distances of red giant stars with 8-band photometry and parallaxes from Gaia EDR3 and the 2MASS and WISE surveys. The algorithm accounts for uncertainties in the predictions arising from the range of possible outputs at each input and from the range of models compatible with the training set (through drop-out). A two-stage procedure is adopted where an initial network to estimate photoastrometric parallaxes is trained using a large sample of noisy parallax data from Gaia EDR3 and then a secondary network is trained using spectroscopic metallicities from the APOGEE and LAMOST surveys and an augmented feature space utilizing the first-stage parallax estimates. The algorithm produces metallicity predictions with an average uncertainty of $\pm 0.19\, \mathrm{dex}$. The methodology is applied to stars within the Galactic bar/bulge with particular focus on a sample of 1.69 million objects with Gaia radial velocities. We demonstrate the use and validity of our approach by inspecting both spatial and kinematic gradients with metallicity in the Galactic bar/bulge recovering previous results on the vertical metallicity gradient (−0.528 ± 0.002 dex kpc−1) and the vertex deviation of the bar ($-21.29\pm 2.74\, \mathrm{deg}$).

Funder

Royal Society

Science and Technology Facilities Council

STFC

European Research Council

Heising-Simons Foundation

National Science Foundation

University of California, Santa Barbara

European Space Agency

National Aeronautics and Space Administration

University of California, Los Angeles

Jet Propulsion Laboratory

California Institute of Technology

Alfred P. Sloan Foundation

U.S. Department of Energy

Office of Science

University of Utah

Carnegie Mellon University

Johns Hopkins University

University of Tokyo

Lawrence Berkeley National Laboratory

Leibniz-Institut für Astrophysik Potsdam

National Astronomical Observatories of China

New Mexico State University

New York University

University of Notre Dame

MCTI

Ohio State University

Pennsylvania State University

Universidad Nacional Autónoma de México

University of Arizona

University of Colorado Boulder

Oxford University

University of Portsmouth

University of Virginia

University of Washington

Vanderbilt University

Yale University

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3