X-ray plateaus in gamma-ray bursts’ light curves from jets viewed slightly off-axis

Author:

Beniamini Paz12ORCID,Duque Raphaël3,Daigne Frédéric3,Mochkovitch Robert3

Affiliation:

1. Department of Physics, The George Washington University, Washington, DC 20052, USA

2. Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

3. Institut d’Astrophysique de Paris, CNRS, UMR 7095, Sorbonne Université, 98 bis boulevard Arago, F-75014 Paris, France

Abstract

ABSTRACT Using multiple observational arguments, recent work has shown that cosmological gamma-ray bursts (GRBs) are typically viewed at angles within, or close to the cores of their relativistic jets. One of those arguments relied on the lack of tens-of-days-long periods of very shallow evolution that would be seen in the afterglow light curves of GRBs viewed at large angles. Motivated by these results, we consider that GRBs efficiently produce γ-rays only within a narrow region around the core. We show that, on these near-core lines of sight, structured jets naturally produce shallow phases in the X-ray afterglow of GRBs. These plateaus would be seen by a large fraction of observers and would last between 102–105 s. They naturally reproduce the observed distributions of time-scales and luminosities as well as the intercorrelations between plateau duration, plateau luminosity, and prompt γ-ray energy. An advantage of this interpretation is that it involves no late-time energy injection which would be both challenging from the point of view of the central engine and, as we show here, less natural given the observed correlations between plateau and prompt properties.

Funder

Gordon and Betty Moore Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3