HLC2: a highly efficient cross-matching framework for large astronomical catalogues on heterogeneous computing environments

Author:

Zhang Yajie12ORCID,Yu Ce12ORCID,Sun Chao12,Xiao Jian12,Li Kun12,Mu Yifei12,Cui Chenzhou23ORCID

Affiliation:

1. College of Intelligence and Computing, Tianjin University , No. 135 Yaguan Road, Haihe Education Park, Tianjin 300350, China

2. Technical R&D Innovation Center, National Astronomical Data Center , No. 135 Yaguan Road, Haihe Education Park, Tianjin 300350, China

3. National Astronomical Observatories, Chinese Academy of Sciences , No. 20 Datun Road, Chaoyang District, Beijing 100012, China

Abstract

ABSTRACT Cross-matching operation, which is to find corresponding data for the same celestial object or region from multiple catalogues, is indispensable to astronomical data analysis and research. Due to the large amount of astronomical catalogues generated by the ongoing and next-generation large-scale sky surveys, the time complexity of the cross-matching is increasing dramatically. Heterogeneous computing environments provide a theoretical possibility to accelerate the cross-matching, but the performance advantages of heterogeneous computing resources have not been fully utilized. To meet the challenge of cross-matching for substantial increasing amount of astronomical observation data, this paper proposes Heterogeneous-computing-enabled Large Catalogue Cross-matcher (HLC2), a high-performance cross-matching framework based on spherical position deviation on CPU-GPU heterogeneous computing platforms. It supports scalable and flexible cross-matching and can be directly applied to the fusion of large astronomical catalogues from survey missions and astronomical data centres. A performance estimation model is proposed to locate the performance bottlenecks and guide the optimizations. A two-level partitioning strategy is designed to generate an optimized data placement according to the positions of celestial objects to increase throughput. To make HLC2 a more adaptive solution, the architecture-aware task splitting, thread parallelization, and concurrent scheduling strategies are designed and integrated. Moreover, a novel quad-direction strategy is proposed for the boundary problem to effectively balance performance and completeness. We have experimentally evaluated HLC2 using public released catalogue data. Experiments demonstrate that HLC2 scales well on different sizes of catalogues and the cross-matching speed is significantly improved compared to the state-of-the-art cross-matchers.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3