Discovery of non-equilibrium ionization plasma associated with the North Polar Spur and Loop I

Author:

Yamamoto Marino1ORCID,Kataoka Jun1,Sofue Yoshiaki2

Affiliation:

1. Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan

2. Institute of Astronomy, The University of Tokyo, 2-21-2, Osawa, Mitaka-shi, Tokyo 181-0015, Japan

Abstract

ABSTRACT We investigated the detailed plasma condition of the North Polar Spur (NPS)/Loop I using archival Suzaku data. In previous research, collisional ionization equilibrium (CIE) have been assumed for X-ray plasma state, but we also assume non-equilibrium ionization (NEI) to check the plasma condition in more detail. We found that most of the plasma in the NPS/Loop I favors the state of NEI, and has the density-weighted ionization timescale of net ∼ 1011–12 s cm−3 and the electron number density ne ∼ a few × 10−3 cm−3. The plasma shock age, t, or the time elapsed after the shock front passed through the plasma, is estimated to be on the order of a few $\rm {Myr}$ for the NPS/Loop I, which puts a strict lower limit to the age of the whole NPS/Loop I structure. We found that NEI results in significantly higher temperature and lower emission measure than those currently derived under CIE assumption. The electron temperature under NEI is estimated to be as high as 0.5 keV toward the brightest X-ray NPS ridge at Δθ = −20○, which decreases to 0.3 keV at −10○, and again increases to ∼0.6 keV towards the outer edge of Loop I at Δθ ∼ 0○, about twice the currently estimated temperatures. Here, Δθ is the angular distance from the outer edge of Loop I. We discuss the implication of introducing NEI for the research in plasma states in astrophysical phenomena.

Funder

JST

ERATO

JSPS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Hα faintness of the North Polar Spur;Monthly Notices of the Royal Astronomical Society;2023-07-03

2. Thermal and chemical properties of the eROSITA bubbles from Suzaku observations;Nature Astronomy;2023-05-01

3. Evidence for powerful winds and the associated reverse shock as the origin of the Fermi bubbles;Monthly Notices of the Royal Astronomical Society;2022-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3