Supernovae in colliding-wind binaries: observational signatures in the first year

Author:

Pejcha Ondřej1ORCID,Calderón Diego1ORCID,Kurfürst Petr2

Affiliation:

1. Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8, 18000, Czech Republic

2. Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

Abstract

ABSTRACT When a core-collapse supernova (SN) explodes in a binary star system, the ejecta might encounter an overdense shell, where the stellar winds of the two stars previously collided. In this work, we investigate effects of such interactions on SN light curves on time-scales from the early flash ionization signatures to approximately one year after the explosion. We construct a model of the colliding-wind shell in an orbiting binary star system and we provide an analytical expression for the shell thickness and density, which we calibrate with three-dimensional adaptive mesh refinement hydrodynamical simulations probing different ratios of wind momenta and different regimes of radiative cooling efficiency. We model the angle-dependent interaction of SN ejecta with the circumstellar medium and estimate the shock radiative efficiency with a realistic cooling function. We find that the radiated shock power exceeds typical Type IIP SN luminosity only for double red supergiant binaries with mass ratios q ≳ 0.9, wind mass-loss rates $\dot{M}\gtrsim 10^{-4}\, \rm M_\odot \, \text{yr}^{-1}$, and separations between about 50 and 1500 au. The required $\dot{M}$ increases for binaries with smaller q or primaries with faster wind. We estimate that ≪1 per cent of all collapsing massive stars satisfy the conditions on binary mass ratio and separation. Recombination luminosities due to colliding wind shells are at most a factor of 10 higher than for an otherwise unperturbed constant-velocity wind, but higher densities associated with wind acceleration close to the star provide much stronger signal.

Funder

ERC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3