Exploiting morphological data from Pulsar Wind Nebulae via a spatiotemporal leptonic transport code

Author:

van Rensburg C1ORCID,Venter C1,Seyffert A S1,Harding Alice K2

Affiliation:

1. Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa

2. Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract

ABSTRACT The next era of ground-based Cherenkov telescope development will see a great increase in both quantity and quality of γ-ray morphological data. This initiated the development of a spatiotemporal leptonic transport code to model pulsar wind nebulae. We present results from this code that predicts the evolution of the leptonic particle spectrum and radiation at different radii in a spherically symmetric source. We simultaneously fit the overall broad-band spectral energy distribution, the surface brightness profile, and the X-ray photon index versus radius for PWN 3C 58, PWN G21.5 − 0.9, and PWN G0.9 + 0.1. Such concurrent fitting of disparate data sets is non-trivial and we thus investigate the utility of different goodness-of-fit statistics, specifically the traditional χ2 test statistic and a newly developed scaled-flux-normalized test statistic to obtain best-fitting parameters. We find reasonable fits to the spatial and spectral data of all three sources, but note some remaining degeneracies that will have to be broken by future observations.

Funder

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3