Three-dimensional dust stirring by a giant planet embedded in a protoplanetary disc

Author:

Binkert Fabian12,Szulágyi Judit3ORCID,Birnstiel Til12

Affiliation:

1. Faculty of Physics, University Observatory, Ludwig-Maximilians-Universität München, Scheinerstr 1, D-81679 Munich, Germany

2. Exzellenzcluster ORIGINS , Boltzmannstr 2, D-85748 Garching, Germany

3. Institute for Particle Physics & Astrophysics , ETH Zurich, Wolfgang-Pauli-Str 27, CH-8093 Zürich, Switzerland

Abstract

ABSTRACT The motion of solid particles embedded in gaseous protoplanetary discs is influenced by turbulent fluctuations. Consequently, the dynamics of moderately to weakly coupled solids can be distinctly different from the dynamics of the gas. Additionally, gravitational perturbations from an embedded planet can further impact the dynamics of solids. In this work, we investigate the combined effects of turbulent fluctuations and planetary dust stirring in a protoplanetary disc on three-dimensional dust morphology and on synthetic ALMA continuum observations. We carry out 3D radiative two-fluid (gas + 1-mm-dust) hydrodynamic simulations in which we explicitly model the gravitational perturbation of a Jupiter-mass planet. We derived a new momentum-conserving turbulent diffusion model that introduces a turbulent pressure to the pressureless dust fluid to capture the turbulent transport of dust. The model implicitly captures the effects of orbital oscillations and reproduces the theoretically predicted vertical settling-diffusion equilibrium. We find a Jupiter-mass planet to produce distinct and large-scale three-dimensional flow structures in the mm-sized dust, which vary strongly in space. We quantify these effects by locally measuring an effective vertical diffusivity (equivalent alpha) and find azimuthally averaged values in a range δeff ∼ 5 × 10−3–2 × 10−2 and local peaks at values of up to δeff ∼ 3 × 10−1. In synthetic ALMA continuum observations of inclined discs, we find effects of turbulent diffusion to be observable, especially at disc edges, and effects of planetary dust stirring in edge-on observations.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3