Probing cosmic dawn with emission lines: predicting infrared and nebular line emission for ALMA and JWST

Author:

Katz Harley1,Galligan Thomas P1,Kimm Taysun2,Rosdahl Joakim3ORCID,Haehnelt Martin G4,Blaizot Jeremy3,Devriendt Julien1,Slyz Adrianne1,Laporte Nicolas5ORCID,Ellis Richard5

Affiliation:

1. Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

2. Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

3. Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-Laval, France

4. Kavli Institute for Cosmology and Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

5. Department of Physics & Astronomy, University College London, London WC1E 6BT, UK

Abstract

ABSTRACT Infrared and nebular lines provide some of our best probes of the physics regulating the properties of the interstellar medium (ISM) at high redshift. However, interpreting the physical conditions of high-redshift galaxies directly from emission lines remains complicated due to inhomogeneities in temperature, density, metallicity, ionization parameter, and spectral hardness. We present a new suite of cosmological, radiation-hydrodynamics simulations, each centred on a massive Lyman-break galaxy that resolves such properties in an inhomogeneous ISM. Many of the simulated systems exhibit transient but well-defined gaseous discs that appear as velocity gradients in [C ii] 157.6 $\mu$m emission. Spatial and spectral offsets between [C ii] 157.6 $\mu$m and [O iii] 88.33 $\mu$m are common, but not ubiquitous, as each line probes a different phase of the ISM. These systems fall on the local [C ii]–SFR relation, consistent with newer observations that question previously observed [C ii] 157.6 $\mu$m deficits. Our galaxies are consistent with the nebular line properties of observed z ∼ 2–3 galaxies and reproduce offsets on the BPT and mass-excitation diagrams compared to local galaxies due to higher star formation rate (SFR), excitation, and specific-SFR, as well as harder spectra from young, metal-poor binaries. We predict that local calibrations between H α and [O ii] 3727$\, \mathring{\rm A}$ luminosity and galaxy SFR apply up to z > 10, as do the local relations between certain strong line diagnostics (R23 and [O iii] 5007$\, \mathring{\rm A}$/H β) and galaxy metallicity. Our new simulations are well suited to interpret the observations of line emission from current (ALMA and HST) and upcoming facilities (JWST and ngVLA).

Funder

National Research Foundation of Korea

European Research Council

Agence Nationale de la Recherche

Royal Society of Edinburgh

Horizon 2020

Science and Technology Facilities Council

Department for Business, Energy and Industrial Strategy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3