Constraining mechanism associated with fast radio burst and glitch from SGR J1935

Author:

Wang Wei-Hua12ORCID,Xu Heng3ORCID,Wang Wei-Yang1ORCID,Du Shuang1ORCID,Cheng Quan4,Zheng Xiao-Ping45,Xu Ren-Xin13

Affiliation:

1. School of Physics, Peking University, Beijing 100871, China

2. Key Laboratory of Quark and Lepton Physics(MOE), Central China Normal University, Wuhan 430079, China

3. Kavli Institute for Astronomy and Astrophysics at Peking University, Beijing 100871, China

4. Institute of Astrophysics, Central China Normal University, Wuhan 430079, China

5. School of Physics, Huazhong University of Science and Technology, Wuhan 430079, China

Abstract

ABSTRACT The discovery of fast radio burst (FRB) 200428 from galactic SGR J1935+2154 makes it possible to measure rotational changes accompanied by FRBs and to test several FRB models which may be simultaneously associated with glitches. Inspired by this idea, we present order of magnitude calculations to the scenarios proposed. FRB models such as global starquakes, crust fractures, and collisions between pulsars and asteroids/comets are discussed. For each mechanism, the maximum glitch sizes are constrained by the isotropic energy release during the X-ray burst and/or the SGR J1935+2154-like radio burst rate. Brief calculations show that, the maximum glitch sizes for different mechanisms differ by order(s) of magnitude. If glitches are detected to be coincident with FRBs from galactic magnetars in the future, glitch behaviours (such as glitch size, rise time-scale, the recovery coefficient, and spin-down rate offset) are promising to serve as criterions to distinguish glitch mechanisms and in turn to constrain FRB models.

Funder

KIAA

National Key Research and Development Program of China

National Natural Science Foundation of China

Chinese Academy of Sciences

CAS

Key Laboratory of Quark and Lepton Physics

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3