AGN and star formation across cosmic time

Author:

Symeonidis M1,Page M J1ORCID

Affiliation:

1. Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK

Abstract

ABSTRACT We investigate the balance of power between stars and AGN across cosmic history, based on the comparison between the infrared (IR) galaxy luminosity function (LF) and the IR AGN LF. The former corresponds to emission from dust heated by stars and AGN, whereas the latter includes emission from AGN-heated dust only. We find that at all redshifts (at least up to z ∼ 2.5), the high-luminosity tails of the two LFs converge, indicating that the most IR-luminous galaxies are AGN-powered. Our results shed light to the decades-old conundrum regarding the flatter high-luminosity slope seen in the IR galaxy LF compared to that in the UV and optical. We attribute this difference to the increasing fraction of AGN-dominated galaxies with increasing total IR luminosity (LIR). We partition the LIR−z parameter space into a star formation-dominated and an AGN-dominated region, finding that the most luminous galaxies at all epochs lie in the AGN-dominated region. This sets a potential ‘limit’ to attainable star formation rates, casting doubt on the abundance of ‘extreme starbursts’: if AGN did not exist, LIR > 1013 L⊙ galaxies would be significantly rarer than they currently are in our observable Universe. We also find that AGN affect the average dust temperatures (Tdust) of galaxies and hence the shape of the well-known LIR−Tdust relation. We propose that the reason why local ULIRGs are hotter than their high-redshift counterparts is because of a higher fraction of AGN-dominated galaxies amongst the former group.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3