Disc settling and dynamical heating: histories of Milky Way-mass stellar discs across cosmic time in the FIRE simulations

Author:

McCluskey Fiona1,Wetzel Andrew1ORCID,Loebman Sarah R2,Moreno Jorge3ORCID,Faucher-Giguère Claude-André4ORCID,Hopkins Philip F5ORCID

Affiliation:

1. Department of Physics & Astronomy, University of California , Davis, 1 Shields Ave, Davis, CA 95616 , USA

2. Department of Physics, University of California, Merced , 5200 Lake Road, Merced, CA 95343 , USA

3. Department of Physics & Astronomy, Pomona College , Claremont, CA 91711 , USA

4. Department of Physics & Astronomy and CIERA, Northwestern University , 1800 Sherman Ave, Evanston, IL 60201 , USA

5. TAPIR, California Institute of Technology , Mailcode 350-17, Pasadena, CA 91125 , USA

Abstract

ABSTRACT We study the kinematics of stars both at their formation and today within 14 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. We quantify the relative importance of cosmological disc settling and post-formation dynamical heating. We identify three eras: a Pre-Disc Era (typically ≳ 8 Gyr ago), when stars formed on dispersion-dominated orbits; an Early-Disc Era (≈8–4 Gyr ago), when stars started to form on rotation-dominated orbits but with high velocity dispersion, σform; and a Late-Disc Era (≲ 4 Gyr ago), when stars formed with low σform. σform increased with time during the Pre-Disc Era, peaking ≈8 Gyr ago, then decreased throughout the Early-Disc Era as the disc settled and remained low throughout the Late-Disc Era. By contrast, the dispersion measured today, σnow, increases monotonically with age because of stronger post-formation heating for Pre-Disc stars. Importantly, most of σnow was in place at formation, not added post-formation, for stars younger than ≈10 Gyr. We compare the evolution of the three velocity components: at all times, σR, form > σϕ, form > σZ, form. Post-formation heating primarily increased σR at ages ≲ 4 Gyr but acted nearly isotropically for older stars. The kinematics of young stars in FIRE-2 broadly agree with the range observed across the MW, M31, M33, and PHANGS-MUSE galaxies. The lookback time that the disc began to settle correlates with its dynamical state today: earlier-settling galaxies currently form colder discs. Including stellar cosmic-ray feedback does not significantly change disc rotational support at fixed stellar mass.

Funder

NSF

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Galactic Archaeology with Gaia;New Astronomy Reviews;2024-12

2. The Three-phase Evolution of the Milky Way;The Astrophysical Journal;2024-08-28

3. Formation of Galactic Disks. II. The Physical Drivers of Disk Spin-up;The Astrophysical Journal;2024-08-26

4. On the existence of a very metal-poor disc in the Milky Way;Monthly Notices of the Royal Astronomical Society;2024-08-05

5. Discovery of the local counterpart of disc galaxies at z > 4: The oldest thin disc of the Milky Way using Gaia-RVS;Astronomy & Astrophysics;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3