Sparse Bayesian mass mapping with uncertainties: peak statistics and feature locations

Author:

Price M A1,McEwen J D1,Cai X1,Kitching (for the LSST Dark Energy Science Collaboration) T D1

Affiliation:

1. Mullard Space Science Laboratory, University College London, London RH5 6NT, UK

Abstract

ABSTRACT Weak lensing convergence maps – upon which higher order statistics can be calculated – can be recovered from observations of the shear field by solving the lensing inverse problem. For typical surveys this inverse problem is ill-posed (often seriously) leading to substantial uncertainty on the recovered convergence maps. In this paper we propose novel methods for quantifying the Bayesian uncertainty in the location of recovered features and the uncertainty in the cumulative peak statistic – the peak count as a function of signal-to-noise ratio (SNR). We adopt the sparse hierarchical Bayesian mass-mapping framework developed in previous work, which provides robust reconstructions and principled statistical interpretation of reconstructed convergence maps without the need to assume or impose Gaussianity. We demonstrate our uncertainty quantification techniques on both Bolshoi N-body (cluster scale) and Buzzard V-1.6 (large-scale structure) N-body simulations. For the first time, this methodology allows one to recover approximate Bayesian upper and lower limits on the cumulative peak statistic at well-defined confidence levels.

Funder

Science and Technology Facilities Council

Royal Society

Engineering and Physical Sciences Research Council

Leverhulme Trust

Institut National de Physique Nucléaire et de Physique des Particules

National Science Foundation

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accurate kappa reconstruction algorithm for masked shear catalog;Physical Review D;2024-06-20

2. Probabilistic mass-mapping with neural score estimation;Astronomy & Astrophysics;2023-03-27

3. KaRMMa – kappa reconstruction for mass mapping;Monthly Notices of the Royal Astronomical Society;2022-02-21

4. Weak-lensing mass reconstruction using sparsity and a Gaussian random field;Astronomy & Astrophysics;2021-05

5. Sparse Bayesian mass-mapping with uncertainties: Full sky observations on the celestial sphere;Monthly Notices of the Royal Astronomical Society;2020-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3