The role of the mass ratio in ballistic capture

Author:

Luo Zong-Fu1ORCID

Affiliation:

1. School of Astronomy and Space Science, Nanjing University, Nanjing 210023, P. R. China

Abstract

ABSTRACT A massless particle can be naturally captured by a celestial body with the aid of a third body. In this work, the influence of the mass ratio on ballistic capture is investigated in the planar circular restricted three-body problem (CR3BP) model. Four typical dynamical environments with decreasing mass ratios, that is, the Pluto–Charon, Earth–Moon, Sun–Jupiter, and Saturn–Titan systems, are considered. A generalized method is introduced to derive ballistic capture orbits by starting from a set of initial conditions and integrating backward in time. Particular attention is paid to the backward escape orbits, following which a test particle can be temporarily trapped by a three-body gravity system, although the particle will eventually deviate away from the system. This approach is applied to the four candidate systems with a series of Jacobi constant levels to survey and compare the capture probability (quantitatively) and capture capability (qualitatively) when the mass ratio varies. Capture mechanisms inducing favourable ballistic capture are discussed. Moreover, the possibility and stability of capture by secondary celestial bodies are analysed. The obtained results may be useful in explaining the capture phenomena of minor bodies or in designing mission trajectories for interplanetary probes.

Funder

National Natural Science Foundation of China

Defence Science and Technology Laboratory

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ballistic Capture Analysis Using the Energy Transition Domain;Journal of Guidance, Control, and Dynamics;2024-01-30

2. Mars orbit insertion via ballistic capture and aerobraking;Astrodynamics;2021-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3