Mass outflow of the X-ray emission line gas in NGC 4151

Author:

Kraemer S B1,Turner T J2ORCID,Couto J D3,Crenshaw D M4,Schmitt H R5,Revalski M6ORCID,Fischer T C6

Affiliation:

1. Department of Physics, Institute for Astrophysics and Computational Sciences, The Catholic University of America, Washington, DC 20064, USA

2. Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA

3. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21210, USA

4. Department of Physics and Astronomy, Georgia State University, 25 Park Place, Room 631, Atlanta, GA 30303, USA

5. Naval Research Laboratory, Washington, DC 20375, USA

6. Space Telescope Science Institute, Baltimore, MD 21218, USA

Abstract

ABSTRACT We have analysed Chandra/High Energy Transmission Gratings spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth-order spectral images show extended H- and He-like O and Ne, up to a distance r ∼ 200 pc from the nucleus. Using the first-order spectra, we measure an average line velocity ∼−230 km s−1, suggesting significant outflow of X-ray gas. We generated cloudy photoionization models to fit the first-order spectra; the fit required three distinct emission line components. To estimate the total mass of ionized gas and the mass outflow rates, we applied the model parameters to fit the zeroth-order emission line profiles of Ne ix and Ne x. We determined the total mass of ≈5.4 × 105 M⊙. Assuming the same kinematic profile as that for the [O iii] gas, derived from our analysis of Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra, the peak X-ray mass outflow rate was ≈1.8 M⊙ yr−1, at r ∼ 150 pc. The total mass and mass outflow rates are similar to those determined using [O iii], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray outflow rate does not drop off at r > 100 pc, which suggests that it may have a greater impact on the host galaxy.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3