Unsupervised machine learning for the classification of astrophysical X-ray sources

Author:

Pérez-Díaz Víctor Samuel12ORCID,Martínez-Galarza Juan Rafael1ORCID,Caicedo Alexander34ORCID,D’Abrusco Raffaele1ORCID

Affiliation:

1. Center for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138 , USA

2. School of Engineering, Science and Technology, Universidad del Rosario , Cll. 12C No. 6-25, Bogotá , Colombia

3. Department of Electronics Engineering, Pontificia Universidad Javeriana , Cra. 7 No. 40-62, Bogotá , Colombia

4. Ressolve , Cra. 42 no. 5 Sur - 145, Medellín , Colombia

Abstract

ABSTRACT The automatic classification of X-ray detections is a necessary step in extracting astrophysical information from compiled catalogues of astrophysical sources. Classification is useful for the study of individual objects, statistics for population studies, as well as for anomaly detection, that is, the identification of new unexplored phenomena, including transients and spectrally extreme sources. Despite the importance of this task, classification remains challenging in X-ray astronomy due to the lack of optical counterparts and representative training sets. We develop an alternative methodology that employs an unsupervised machine learning approach to provide probabilistic classes to Chandra Source Catalog sources with a limited number of labelled sources, and without ancillary information from optical and infrared catalogues. We provide a catalogue of probabilistic classes for 8756 sources, comprising a total of 14 507 detections, and demonstrate the success of the method at identifying emission from young stellar objects, as well as distinguishing between small- and large-scale compact accretors with a significant level of confidence. We investigate the consistency between the distribution of features among classified objects and well-established astrophysical hypotheses such as the unified active galactic nucleus model. This provides interpretability to the probabilistic classifier. Code and tables are available publicly through GitHub. We provide a web playground for readers to explore our final classification at https://umlcaxs-playground.streamlit.app.

Funder

NASA

Universidad del Rosario

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3