Pairs of giant shock waves (N-waves) in merging galaxy clusters

Author:

Zhang Congyao1ORCID,Churazov Eugene23,Zhuravleva Irina1

Affiliation:

1. Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637, USA

2. Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str 1, D-85741 Garching, Germany

3. Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia

Abstract

ABSTRACT When a subcluster merges with a larger galaxy cluster, a bow shock is driven ahead of the subcluster. At a later merger stage, this bow shock separates from the subcluster, becoming a ‘runaway’ shock that propagates down the steep density gradient through the cluster outskirts and approximately maintains its strength and the Mach number. Such shocks are plausible candidates for producing radio relics in the periphery of clusters. We argue that, during the same merger stage, a secondary shock is formed much closer to the main cluster centre. A close analogue of this structure is known in the usual hydrodynamics as N-waves, where the trailing part of the ‘N’ is the result of the non-linear evolution of a shock. In merging clusters, spherical geometry and stratification could further promote its development. Both the primary and the secondary shocks are the natural outcome of a single merger event and often both components of the pair should be present. However, in the radio band, the leading shock could be more prominent, while the trailing shock might conversely be more easily seen in X-rays. The latter argument implies that for some of the (trailing) shocks found in X-ray data, it might be difficult to identify their ‘partner’ leading shocks or the merging subclusters, which are farther away from the cluster centre. We argue that the Coma cluster and A2744 could be two examples in a post-merger state with such well-separated shock pairs.

Funder

Henry Luce Foundation

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3