Fuelling the nuclear ring of NGC 1097

Author:

Sormani Mattia C1ORCID,Barnes Ashley T23ORCID,Sun Jiayi45ORCID,Stuber Sophia K6ORCID,Schinnerer Eva6,Emsellem Eric27,Leroy Adam K89,Glover Simon C O1ORCID,Henshaw Jonathan D610ORCID,Meidt Sharon E11,Neumann Justus6ORCID,Querejeta Miguel12,Williams Thomas G613ORCID,Bigiel Frank3,Eibensteiner Cosima3,Fragkoudi Francesca14,Levy Rebecca C15ORCID,Grasha Kathryn1617ORCID,Klessen Ralf S118ORCID,Kruijssen J M Diederik1920ORCID,Neumayer Nadine6,Pinna Francesca6,Rosolowsky Erik W21ORCID,Smith Rowan J22ORCID,Teng Yu-Hsuan23ORCID,Tress Robin G24,Watkins Elizabeth J25

Affiliation:

1. Universität Heidelberg, Zentrum für Astronomie, Institut für theoretische Astrophysik , Albert-Ueberle-Straße 2, D-69120 Heidelberg, Germany

2. European Southern Observatory , Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany

3. Argelander-Institut für Astronomie, Universität Bonn , Auf dem Hügel 71, D-53121 Bonn, Germany

4. Department of Physics and Astronomy, McMaster University , 1280 Main Street West, Hamilton, ON L8S 4M1, Canada

5. Canadian Institute for Theoretical Astrophysics (CITA), University of Toronto , 60 Saint George Street, Toronto, ON M5S 3H8, Canada

6. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg, Germany

7. Univ Lyon, Univ Lyon1, ENS de Lyon, CNRS , Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-Laval, France

8. Department of Astronomy, The Ohio State University , 140 West 18th Avenue, Columbus, OH 43210, USA

9. Center for Cosmology and Astroparticle Physics , 191 West Woodruff Avenue, Columbus, OH 43210, USA

10. Astrophysics Research Institute, Liverpool John Moores University , 146 Brownlow Hill, Liverpool L3 5RF, UK

11. Sterrenkundig Observatorium, Universiteit Gent , Krijgslaan 281 S9, B-9000 Gent, Belgium

12. Observatorio Astronómico Nacional (IGN) , C/Alfonso XII, 3, E-28014 Madrid, Spain

13. Sub-department of Astrophysics, Department of Physics, University of Oxford , Keble Road, Oxford OX1 3RH, UK

14. Institute for Computational Cosmology, Department of Physics, Durham University , South Road, Durham DH1 3LE, UK

15. Steward Observatory, University of Arizona , Tucson, AZ 85721, USA

16. Research School of Astronomy and Astrophysics, Australian National University , Canberra, ACT 2611, Australia

17. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) , Australia

18. Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen , Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany

19. Technical University of Munich, School of Engineering and Design, Department of Aerospace and Geodesy, Chair of Remote Sensing Technology , Arcisstraße 21, D-80333 Munich, Germany

20. Cosmic Origins Of Life (COOL) Research DAO , coolresearch.io

21. Department of Physics, 4-183 CCIS, University of Alberta , Edmonton, AB T6G 2E1, Canada

22. Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, UK

23. Center for Astrophysics and Space Sciences, Department of Physics, University of California San Diego , 9500 Gilman Drive, La Jolla, CA 92093, USA

24. Institute of Physics, Laboratory for galaxy evolution and spectral modelling, EPFL, Observatoire de Sauverny , Chemin Pegais 51, CH-1290 Versoix, Switzerland

25. Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg , Mönchhofstraße 12-14, D-69120 Heidelberg, Germany

Abstract

ABSTRACT Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time.

Funder

European Research Council

Royal Society

Natural Sciences and Engineering Research Council of Canada

STFC

National Science Foundation

AEI

Australian Research Council

German Research Foundation

NRAO

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3