A sparse regression approach for populating dark matter haloes and subhaloes with galaxies

Author:

Icaza-Lizaola M123ORCID,Bower Richard G124ORCID,Norberg Peder124,Cole Shaun1,Schaller Matthieu56ORCID

Affiliation:

1. Institute for Computational Cosmology, Department of Physics, Durham University , South Road, Durham DH1 3LE, UK

2. Institute for Data Science, Department of Physics, Durham University , South Road, Durham DH1 3LE, UK

3. Korea Astronomy and Space Science Institute , 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea

4. Centre for Extragalactic Astronomy, Department of Physics, Durham University , South Road, Durham DH1 3LE, UK

5. Lorentz Institute for Theoretical Physics, Leiden University , PO Box 9506, NL-2300 RA Leiden, the Netherlands

6. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden, the Netherlands

Abstract

ABSTRACT We use sparse regression methods (SRMs) to build accurate and explainable models that predict the stellar mass of central and satellite galaxies as a function of properties of their host dark matter haloes. SRMs are machine learning algorithms that provide a framework for modelling the governing equations of a system from data. In contrast with other machine learning algorithms, the solutions of SRM methods are simple and depend on a relatively small set of adjustable parameters. We collect data from 35 459 galaxies from the EAGLE simulation using 19 redshift slices between z = 0 and z = 4 to parametrize the mass evolution of the host haloes. Using an appropriate formulation of input parameters, our methodology can model satellite and central haloes using a single predictive model that achieves the same accuracy as when predicted separately. This allows us to remove the somewhat arbitrary distinction between those two galaxy types and model them based only on their halo growth history. Our models can accurately reproduce the total galaxy stellar mass function and the stellar mass-dependent galaxy correlation functions (ξ(r)) of EAGLE. We show that our SRM model predictions of ξ(r) is competitive with those from subhalo abundance matching and might be comparable to results from extremely randomized trees. We suggest SRM as an encouraging approach for populating the haloes of dark matter only simulations with galaxies and for generating mock catalogues that can be used to explore galaxy evolution or analyse forthcoming large-scale structure surveys.

Funder

STFC

Durham University

BEIS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3