The origin of X-ray coronae around simulated disc galaxies

Author:

Kelly Ashley J1ORCID,Jenkins Adrian1ORCID,Frenk Carlos S1

Affiliation:

1. Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE, UK

Abstract

ABSTRACT The existence of hot, accreted gaseous coronae around massive galaxies is a long-standing central prediction of galaxy formation models in the ΛCDM cosmology. While observations now confirm that extraplanar hot gas is present around late-type galaxies, the origin of the gas is uncertain with suggestions that galactic feedback could be the dominant source of energy powering the emission. We investigate the origin and X-ray properties of the hot gas that surrounds galaxies of halo mass, $(10^{11}\!-\!10^{14}) \, \mathrm{M}_\odot$, in the cosmological hydrodynamical eagle simulations. We find that the central X-ray emission, ≤0.10Rvir, of haloes of mass $\le 10^{13} \, \mathrm{M}_\odot$ originates from gas heated by supernovae (SNe). However, beyond this region, a quasi-hydrostatic, accreted atmosphere dominates the X-ray emission in haloes of mass $\ge 10^{12} \, \mathrm{M}_\odot$. We predict that a dependence on halo mass of the hot gas to dark matter mass fraction can significantly change the slope of the LX–Mvir relation (which is typically assumed to be 4/3 for clusters) and we derive the scaling law appropriate to this case. As the gas fraction in haloes increases with halo mass, we find a steeper slope for the LX–Mvir in lower mass haloes, $\le 10^{14} \, \mathrm{M}_\odot$. This varying gas fraction is driven by active galactic nuclei feedback. We also identify the physical origin of the so-called ‘missing feedback’ problem, the apparently low X-ray luminosities observed from high star-forming, low-mass galaxies. This is explained by the ejection of SNe-heated gas from the central regions of the halo.

Funder

Science and Technology Facilities Council

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3