A time-dependent particle acceleration and emission model: understanding particle spectral evolution and blazar flares

Author:

Zheng Y G123,Kang S J4,Yang C Y23ORCID,Bai J M23

Affiliation:

1. Department of Physics, Yunnan Normal University, Kunming 650092, China

2. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China

3. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China

4. School of Physics and Electrical Engineering, Liupanshui Normal University, Liupanshui, Guizhou 553004, China

Abstract

ABSTRACT The jets of blazars are renowned for their multiwavelength flares and rapid extreme variability; however, there are still some important unanswered questions about the physical processes responsible for these spectral and temporal changes in emission properties. In this article, we develop a time-dependent particle evolution model for the time-varying emission spectrum of blazars. In the model, we introduce time-dependent electric and magnetic fields, which consistently include the variability of relevant physical quantities in the transport equation. The evolution of the electron distribution is solved numerically from a generalized transport equation that contains terms describing the electrostatic, first- and second-order Fermi acceleration, escape of particles due to both advection and spatial diffusion, and also energy losses due to synchrotron emission and inverse-Compton scattering of both synchrotron and external ambient photon fields. We find that the light-curve profiles of blazars are consistent with the particle spectral evolution resulting from time-dependent electric and magnetic fields, rather than the effects of acceleration or cooling processes. The proposed model is able to account simultaneously for the variability of both the energy spectrum and the light-curve profile of the BL Lac object Mrk 421, with reasonable assumptions about the physical parameters. The results indicate strongly that the magnetic field evolution in the dissipated region of a blazar jet can account for the variabilities.

Funder

National Natural Science Foundation of China

Specialized Research Fund for Shandong Provincial Key Laboratory

Key Laboratory of Particle Astrophysics of Yunnan Province

Science and Technology Foundation of Guizhou Province

Department of Education of Guizhou Province

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3