Array element coupling in radio interferometry I: a semi-analytic approach

Author:

Josaitis Alec T1ORCID,Ewall-Wice Aaron2ORCID,Fagnoni Nicolas1ORCID,de Lera Acedo Eloy13ORCID

Affiliation:

1. Astrophysics Group - Cavendish Laboratory, University of Cambridge , JJ Thompson Avenue, Cambridge CB3 OHE, UK

2. Astronomy Department, University of California - Berkeley , 425 Campbell Hall, University Dr., Berkeley 94720, USA

3. Kavli Institute for Cosmology , Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT We derive a general formalism for interferometric visibilities, which considers first-order antenna–antenna coupling and assumes steady-state, incident radiation. We simulate such coupling features for non-polarized skies on a compact, redundantly spaced array and present a phenomenological analysis of the coupling features. Contrary to previous studies, we find mutual coupling features manifest themselves at non-zero fringe rates. We compare power-spectrum results for both coupled and non-coupled (noiseless, simulated) data and find coupling effects to be highly dependent on local sidereal time (LST), baseline length, and baseline orientation. For all LSTs, lengths, and orientations, coupling features appear at delays which are outside the foreground ‘wedge’, which has been studied extensively and contains non-coupled astrophysical foreground features. Further, we find that first-order coupling effects threaten our ability to average data from baselines with identical length and orientation. Two filtering strategies are proposed which may mitigate such coupling systematics. The semi-analytic coupling model herein presented may be used to study mutual coupling systematics as a function of LST, baseline length, and baseline orientation. Such a model is not only helpful to the field of 21cm cosmology, but any study involving interferometric measurements, where coupling effects at the level of at least 1 part in 104 could corrupt the scientific result. Our model may be used to mitigate coupling systematics in existing radio interferometers and to design future arrays where the configuration of array elements inherently mitigates coupling effects at desired LSTs and angular resolutions.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3