Reinterpreting fundamental plane correlations with machine learning

Author:

Schafer Chad123,Singh Sukhdeep23ORCID,Jagvaral Yesukhei23ORCID

Affiliation:

1. Department of Statistics & Data Science, Carnegie Mellon University , Pittsburgh, PA 15213 , USA

2. McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15213 , USA

3. NSF AI Planning Institute, Carnegie Mellon University , Pittsburgh, PA 15213 , USA

Abstract

ABSTRACT This work explores the relationships between galaxy sizes and related observable galaxy properties in a large volume cosmological hydrodynamical simulation. The objectives of this work are to develop a better understanding of both the correlations between galaxy properties and the influence of environment on galaxy physics in order to build an improved model for the galaxy sizes, building off of the fundamental plane. With an accurate intrinsic galaxy size predictor, the residuals in the observed galaxy sizes can potentially be used for multiple cosmological applications, including making measurements of galaxy velocities in spectroscopic samples, estimating the rate of cosmic expansion, and constraining the uncertainties in the photometric redshifts of galaxies. Using projection pursuit regression, the model accurately predicts intrinsic galaxy sizes and have residuals which have limited correlation with galaxy properties. The model decreases the spatial correlation of galaxy size residuals by a factor of ∼5 at small scales compared to the baseline correlation when the mean size is used as a predictor.

Funder

NSF

Simons Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3