Investigation on young radio AGNs based on SDSS spectroscopy

Author:

Liao Mai12ORCID,Gu Minfeng1

Affiliation:

1. Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China

2. University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China

Abstract

ABSTRACT The gigahertz peaked spectrum (GPS) sources, compact steep spectrum (CSS) radio sources, and high-frequency peaker (HFP) radio sources are thought to be young radio active galactic nuclei (AGNs) at the early stage of AGN evolution. We investigated the optical properties of the largest sample of 126 young radio AGNs based on the spectra in SDSS DR12. We find that the black hole masses MBH range from 107.32 to 109.84$\rm M_{\odot }$ and the Eddington ratios Redd vary from 10−4.93 to 100.37, suggesting that young radio AGNs have various accretion activities and not all are accreting at high accretion rate. Our young radio sources generally follow the evolutionary trend towards large-scale radio galaxies with increasing linear size and decreasing accretion rate in the radio power–linear size diagram. The radio properties of low-luminosity young radio AGNs with low Redd are discussed. The line width of [O iii] λ5007 core (σ[O iii]) is found to be a good surrogate of stellar velocity dispersion σ*. The radio luminosity $L_{\rm 5\, GHz}$ correlates strongly with [O iii] core luminosity L[O iii], suggesting that radio activity and accretion are closely related in young radio sources. We find one object that can be defined as a narrow-line Seyfert 1 galaxy, representing a population of young AGNs with both young jet and early accretion activity. The optical variabilities of 15 quasars with multi-epoch spectroscopy were investigated. Our results show that the optical variability in young AGN quasars presents low variations ($\leqslant \! 60{{\ \rm per\ cent}}$) similar to the normal radio-quiet quasars.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3