The period–luminosity relation for Mira variables in the Milky Way using Gaia DR3: a further distance anchor for H0

Author:

Sanders Jason L1ORCID

Affiliation:

1. Department of Physics and Astronomy, University College London , London WC1E 6BT, UK

Abstract

ABSTRACT Gaia DR3 parallaxes are used to calibrate preliminary period–luminosity relations of O-rich Mira variables in the 2MASS J, H, and Ks bands using a probabilistic model accounting for variations in the parallax zero-point and underestimation of the parallax uncertainties. The derived relations are compared to those measured for the Large and Small Magellanic Clouds, the Sagittarius dwarf spheroidal galaxy, globular cluster members, and the subset of Milky Way Mira variables with VLBI parallaxes. The Milky Way linear JHKs relations are slightly steeper and thus fainter at short period than the corresponding LMC relations, suggesting population effects in the near-infrared are perhaps larger than previous observational works have claimed. Models of the Gaia astrometry for the Mira variables suggest that, despite the intrinsic photocentre wobble and use of mean photometry in the astrometric solution of the current data reduction, the recovered parallaxes should be on average unbiased but with underestimated uncertainties for the nearest stars. The recommended Gaia EDR3 parallax zero-point corrections evaluated at $\nu _\mathrm{eff}=1.25\, \mu \mathrm{m}^{-1}$ require minimal ($\lesssim 5\, \mu \mathrm{as}$) corrections for redder five-parameter sources, but overcorrect the parallaxes for redder six-parameter sources, and the parallax uncertainties are underestimated at most by a factor ∼1.6 at $G\approx 12.5\, \mathrm{mag}$. The derived period–luminosity relations are used as anchors for the Mira variables in the Type Ia host galaxy NGC 1559 to find $H_0=(73.7\pm 4.4)\, \mathrm{km\, s}^{-1}\, \mathrm{Mpc}^{-1}$.

Funder

STFC

European Research Council

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Tale of Many H0;Annual Review of Astronomy and Astrophysics;2024-09-13

2. Kinematics and dynamics of the Galactic bar revealed by Gaia long-period variables;Monthly Notices of the Royal Astronomical Society;2024-08-23

3. The epoch of the Milky Way’s bar formation: dynamical modelling of Mira variables in the nuclear stellar disc;Monthly Notices of the Royal Astronomical Society;2024-03-08

4. The Mira Distance to M101 and a 4% Measurement of H 0;The Astrophysical Journal;2024-03-01

5. Omnipotent dark energy: A phenomenological answer to the Hubble tension;Physical Review D;2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3