Affiliation:
1. Department of Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
Abstract
Abstract
Near-future large galaxy surveys will encounter blended galaxy images at a fraction of up to 50 per cent in the densest regions of the Universe. Current deblending techniques may segment the foreground galaxy while leaving missing pixel intensities in the background galaxy flux. The problem is compounded by the diffuse nature of galaxies in their outer regions, making segmentation significantly more difficult than in traditional object segmentation applications. We propose a novel branched generative adversarial network to deblend overlapping galaxies, where the two branches produce images of the two deblended galaxies. We show that generative models are a powerful engine for deblending given their innate ability to infill missing pixel values occluded by the superposition. We maintain high peak signal-to-noise ratio and structural similarity scores with respect to ground truth images upon deblending. Our model also predicts near-instantaneously, making it a natural choice for the immense quantities of data soon to be created by large surveys such as Large Synoptic Survey Telescope, Euclid, and Wide-Field Infrared Survey Telescope.
Funder
Alfred P. Sloan Foundation
National Science Foundation
U.S. Department of Energy
National Aeronautics and Space Administration
Max Planck Society
Higher Education Funding Council for England
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献