Computing optical meteor flux using global meteor network data

Author:

Vida Denis12ORCID,Blaauw Erskine Rhiannon C3,Brown Peter G12,Kambulow Jonathon14,Campbell-Brown Margaret12ORCID,Mazur Michael J1

Affiliation:

1. Department of Physics and Astronomy, University of Western Ontario , London, Ontario N6A 3K7, Canada

2. Institute for Earth and Space Exploration, University of Western Ontario , London, Ontario N6A 5B8, Canada

3. Jacobs Space Exploration Group, Marshall Space Flight Center , Huntsville, AL 35812, USA

4. Department of Physics and Astronomy, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada

Abstract

ABSTRACT Meteor showers and their outbursts are the dominant source of meteoroid impact risk to spacecraft on short time-scales. Meteor shower prediction models depend on historical observations to produce accurate forecasts. However, the current lack of quality and persistent world-wide monitoring at optical meteoroid sizes has left some recent major outbursts poorly observed. A novel method of computing meteor shower flux is developed and applied to Global Meteor Network data. The method is verified against previously published observations of the Perseids and the Geminids. The complete mathematical and algorithmic details of computing meteor shower fluxes from video observations are described. As an example application of our approach, the flux measurements of the 2021 Perseid outburst, the 2020–2022 Quadrantids, and 2020–2021 Geminids are presented. The flux of the 2021 Perseids reached similar levels to the 1991–1994 and 2016 outbursts (ZHR ∼ 280). The flux of the Quadrantids shows high year-to-year variability in the core of the stream while the longer lasting background activity is less variable, consistent with an age difference between the two components. The Geminids show a double peak in flux near the time of peak.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3