A quantitative assessment of completeness correction methods and public release of a versatile simulation code

Author:

Leethochawalit Nicha123ORCID,Trenti Michele12,Morishita Takahiro4,Roberts-Borsani Guido5,Treu Tommaso5ORCID

Affiliation:

1. School of Physics, Tin Alley, University of Melbourne, VIC 3010, Australia

2. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia

3. National Astronomical Research Institute of Thailand (NARIT), MaeRim, Chiang Mai 50180, Thailand

4. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

5. Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles, CA 90095-1547, USA

Abstract

ABSTRACT Having accurate completeness functions is crucial to the determination of the rest-frame ultraviolet luminosity functions (UVLFs) all the way back to the epoch of reionization. Most studies use injection-recovery simulations to determine completeness functions. Although conceptually similar, published approaches have subtle but important differences in their definition of the completeness function. As a result, they implement different methods to determine the UVLFs. We discuss the advantages and limitations of existing methods using a set of mock observations, and then compare the methods when applied to the same set of Hubble Legacy Field (HLF) images. We find that the most robust method under all our mock observations is the one that defines completeness as a function of both input and output magnitude. Other methods considering completeness only as a function of either input or output magnitude may suffer limitations in a presence of photometric scatter and/or steep luminosity functions. In particular, when the flux scatter is ≳ 0.2 mag, the bias in the bright end of the UVLFs is on par with other systematic effects such as the lensing magnification bias. When tested on HLF images, all methods yield UVLFs that are consistent within 2σ confidence, suggesting that UVLF uncertainties in the literature are still dominated by small number statistics and cosmic variance. The completeness simulation code used in this study (GLACiaR2) is publicly released with this paper as a tool to analyse future higher precision data sets such as those expected from the James Webb Space Telescope.

Funder

Australian Research Council

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3