On the ring nebulae around runaway Wolf–Rayet stars

Author:

Meyer D M-A1ORCID,Oskinova L M12,Pohl M13,Petrov M4

Affiliation:

1. Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany

2. Department of Astronomy, Kazan Federal University, Kremlevskaya Str 18, Kazan, Russia

3. DESY, Platanenallee 6, 15738 Zeuthen, Germany

4. Max Planck Computing and Data Facility (MPCDF), Gießenbachstrasse 2, D-85748 Garching, Germany

Abstract

ABSTRACT Wolf–Rayet stars are advanced evolutionary stages of massive stars. Despite their large mass-loss rates and high wind velocities, none of them displays a bow shock, although a fraction of them are classified as runaway. Our 2.5-D numerical simulations of circumstellar matter around a $60\mbox{-}\rm M_{\odot }$ runaway star show that the fast Wolf–Rayet stellar wind is released into a wind-blown cavity filled with various shocks and discontinuities generated throughout the preceding evolutionary phases. The resulting fast-wind–slow-wind interaction leads to the formation of spherical shells of swept-up dusty material similar to those observed in the near-infrared at $24\, \rm \mu \rm m$ with Spitzer, which appear to be comoving with the runaway massive stars, regardless of their proper motion and/or the properties of the local ambient medium. We interpret bright infrared rings around runaway Wolf–Rayet stars in the Galactic plane as an indication of their very high initial masses and complex evolutionary history. Stellar-wind bow shocks become faint as stars run in diluted media, therefore our results explain the absence of bow shocks detected around Galactic Wolf–Rayet stars, such as the high-latitude, very fast-moving objects WR71, WR124 and WR148. Our results show that the absence of a bow shock is consistent with the runaway nature of some Wolf–Rayet stars. This questions the in situ star formation scenario of high-latitude Wolf–Rayet stars in favour of dynamical ejection from birth sites in the Galactic plane.

Funder

Division of Loan Repayment

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3