ΛCDM periodic cosmology

Author:

Fay Stéphane1

Affiliation:

1. Palais de la Découverte, Astronomy Department, Avenue Franklin Roosevelt, F-75008 Paris, France

Abstract

ABSTRACT We examine the possibility that Universe expansion be made of some Λ-cold dark matter (ΛCDM) expansions repeating periodically, separated by some inflation- and radiation-dominated phases. This so-called ΛCDM periodic cosmology is motivated by the possibility that inflation and the present phase of accelerated expansion be due to the same dark energy. Then, in a phase space showing the variation of matter density parameter Ωm with respect to this of the radiation Ωr, the curve Ωm(Ωr) looks like a closed trajectory that Universe could run through forever. In this case, the end of the expansion acceleration of the ΛCDM phase is the beginning of a new inflation phase. We show that such a scenario implies the coupling of matter and/or radiation to dark energy. We consider the simplest of these ΛCDM periodic models i.e. a vacuum energy coupled to radiation. From matter domination phase to today, it behaves like a ΛCDM model, then followed by an inflation phase. But a sudden and fast decay of the dark energy into radiation periodically ends the expansion acceleration. This leads to a radiation-dominated Universe preceding a new ΛCDM type expansion. The model is constrained with Markov Chain Monte Carlo simulations using supernovae, Hubble expansion, Baryon Acoustic Oscillations (BAO), and cosmic microwave background data and fits the data as well as the ΛCDM one.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refinement of the Proposed Gamma-Ray Burst Time Delay Model;International Journal of Astronomy and Astrophysics;2024

2. Quantifying the S8 tension with the Redshift Space Distortion data set;Physics of the Dark Universe;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3