Applying the starquake model to study the formation of elastic mountains on spinning neutron stars

Author:

Gangwar Yashaswi1,Jones David Ian1

Affiliation:

1. Mathematical Sciences and STAG Research Centre, University of Southampton , Southampton SO17 1BJ , UK

Abstract

ABSTRACT When a neutron star is spun-up or spun-down, the changing strains in its solid elastic crust can give rise to sudden fractures known as starquakes. Early interest in starquakes focused on their possible connection to pulsar glitches. While modern glitch models rely on pinned superfluid vorticity rather than crustal fracture, starquakes may nevertheless play a role in the glitch mechanism. Recently, there has been interest in the issue of starquakes resulting in non-axisymmetric shape changes, potentially linking the quake phenomenon to the building of neutron star mountains, which would then produce continuous gravitational waves. Motivated by this issue, we present a simple model that extends the energy minimization-based calculations, originally developed to model axisymmetric glitches, to also include non-axisymmetric shape changes. We show that the creation of a mountain in a quake necessarily requires a change in the axisymmetric shape too. We apply our model to the specific problem of the spin-up of an initially non-rotating star, and estimate the maximum mountain that can be built in such a process, subject only to the constraints of energy and angular momentum conservation.

Funder

Engineering and Physical Sciences Research Council

STFC

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3