Restoration of images with a spatially varying PSF of the T80-S telescope optical model using neural networks

Author:

Bernardi Rafael L12ORCID,Berdja Amokrane3ORCID,Guzmán Christian Dani4,Torres-Torriti Miguel1,Roth Martin M25

Affiliation:

1. Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7020436 Santiago, Chile

2. Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

3. Andes Scientific Instruments ASI, 7797545 Santiago, Chile

4. Sky-Walkers SpA, 3240000 Litueche, Chile

5. Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Straße 24/25, D-14476 Potsdam, Germany

Abstract

ABSTRACT Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariant in the image plane. However, this condition is not always satisfied in real optical systems. We propose a new method for the restoration of images affected by static and anisotropic aberrations using Deep Neural Networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T80-S Telescope optical model, a 80-cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image that has a constant and known PSF across its field of view. The method is to be tested on the T80-S Telescope. We present the method and results on synthetic data.

Funder

CONICYT

BMBF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Restoration of T80-S telescope’s images using neural networks;Monthly Notices of the Royal Astronomical Society;2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3