Characterization of the ESPRESSO line-spread function and improvement of the wavelength calibration accuracy

Author:

Schmidt Tobias M1ORCID,Bouchy François1

Affiliation:

1. Observatoire Astronomique de l’Université de Genève , Chemin Pegasi 51, Sauverny, CH-1290 , Switzerland

Abstract

ABSTRACT Achieving a truly accurate wavelength calibration of high-dispersion echelle spectrographs is a challenging task but crucially needed for certain science cases, e.g. to test for a possible variation of the fine-structure constant in quasar spectra. One of the spectrographs best suited for this mission is Very Large Telescope/Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observation (ESPRESSO). Nevertheless, previous studies have identified significant discrepancies between the classical wavelength solutions and the one derived independently from the laser frequency comb. The dominant parts of these systematics were intra-order distortions, most-likely related to a deviation of the instrumental line-spread function from the assumed Gaussian shape. Here, we therefore present a study focused on a detailed modelling of the ESPRESSO instrumental line-spread function. We demonstrate that it is strongly asymmetric, non-Gaussian, different for the two slices and fibres, and varies significantly along the spectral orders. Incorporating the determined non-parametric model in the wavelength calibration process drastically improves the wavelength calibration accuracy, reducing the discrepancies between the two independent wavelength solutions from $50\,\rm{m\,s^{-1}}$ to about $10\, \rm{m\,s^{-1}}$. The most striking success is, however, that the different fibres and slices now provide fully consistent measurements with a scatter of just a couple m s−1. This demonstrates that the instrument-related systematics can be nearly eliminated over most of the spectral range by properly taking into account the complex shape of the instrumental line-spread function and paves the way for further optimizations of the wavelength calibration process.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3