Fast-rising blue optical transients and AT2018cow following electron-capture collapse of merged white dwarfs

Author:

Lyutikov Maxim1,Toonen Silvia2

Affiliation:

1. Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036, USA

2. Anton Pannekoek Institute for Astronomy, University of Amsterdam, PO Box 94249, 1090 GE, Amsterdam, the Netherlands

Abstract

AbstractWe suggest that fast-rising blue optical transients (FBOTs) and the brightest event of the class, AT2018cow, result from an electron-capture collapse to a neutron star following the merger of a massive ONeMg white dwarf (WD) with another WD. Two distinct evolutionary channels lead to the disruption of the less-massive WD during the merger and the formation of a shell-burning non-degenerate star incorporating the ONeMg core. During the shell-burning stage, a large fraction of the envelope is lost to the wind, while mass and angular momentum are added to the core. As a result, the electron-capture collapse occurs with a small envelope mass, after ∼102–104 yr. During the formation of a neutron star, as little as ${\sim } 10^{-2} \, \mathrm{M}_\odot$ of the material is ejected at the bounce-off with mildly relativistic velocities and total energy of about a few 1050 erg. This ejecta becomes optically thin on a time-scale of days – this is the FBOT. During the collapse, the neutron star is spun up and the magnetic field is amplified. The ensuing fast magnetically dominated relativistic wind from the newly formed neutron star shocks against the ejecta, and later against the wind. The radiation-dominated forward shock produces the long-lasting optical afterglow, while the termination shock of the relativistic wind produces the high-energy emission in a manner similar to pulsar wind nebulae. If the secondary WD was of the DA type, the wind will likely have ${\sim } 10^{-4} \, \mathrm{M}_\odot$ of hydrogen; this explains the appearance of hydrogen late in the afterglow spectrum. The model explains many of the puzzling properties of FBOTs/AT2018cow: host galaxies, a fast and light anisotropic ejecta producing a bright optical peak, afterglow high-energy emission of similar luminosity to the optical, and late infrared features.

Funder

U.S. Department of Energy

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3