A fast, semi-analytical model for the Venusian binary cloud system

Author:

Dai L-K1ORCID,Zhang X2,Cui J13

Affiliation:

1. Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University , Zhuhai, Guangdong, 519082, People’s Republic of China

2. Department of Earth and Planetary Sciences, University of California Santa Cruz , Santa Cruz, CA 95064, USA

3. Center for Excellence in Comparative Planetology, Chinese Academy of Sciences , Hefei, Anhui, 230026, People’s Republic of China

Abstract

ABSTRACT The Venusian clouds originate from the binary condensation of H2SO4 and H2O. The two components strongly interact with each other via chemistry and cloud formation. Previous works adopted sophisticated microphysical approaches to understand the clouds. Here, we show that the observed vapour and cloud distributions on Venus can be well explained by a semi-analytical model. Our model assumes local thermodynamical equilibrium for water vapour but not for sulphuric acid vapour, and includes the feedback of cloud condensation and acidity to vapour distributions. The model predicts strong supersaturation of the H2SO4 vapour above 60 km, consistent with our recent cloud condensation model. The semi-analytical model is 100 times faster than the condensation model and 1000 times faster than the microphysical models. This allows us to quickly explore a large parameter space of the sulphuric acid gas-cloud system. We found that the cloud mass loading in the upper clouds has an opposite response of that in the lower clouds to the vapour mixing ratios in the lower atmosphere. The transport of water vapour influences the cloud acidity in all cloud layers, while the transport of sulphuric acid vapour only dominates in the lower clouds. This cloud model is fast enough to be coupled with the climate models and chemistry models to understand the cloudy atmospheres of Venus and Venus-like extra-solar planets.

Funder

Chinese Academy of Sciences

National Science Foundation

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3