Orbital structure evolution in self-consistent N-body simulations

Author:

Valencia-Enríquez Diego1ORCID,Puerari Ivânio2,Chaves-Velasquez Leonardo345

Affiliation:

1. Universidad Mariana , Calle 18 No. 34-104, 52001 Pasto , Colombia

2. Instituto Nacional de Astrofísica, Óptica y Electrónica , Calle Luis Enrique Erro 1, Santa María Tonantzintla, 72840 Puebla , Mexico

3. Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México , PO Box 3-72, 58090 Morelia, Michoacán , Mexico

4. Astronomical Observatory, Universidad de Nariño , Sede VIIS, Avenida Panamericana, Pasto, Nariño , Colombia

5. Departamento de Física de la Universidad de Nariño , Torobajo Calle 18 Carrera 50, Pasto, Nariño , Colombia

Abstract

ABSTRACT The bar structure in disc galaxies models is formed by different families of orbits; however, it is not clear how these families of orbits support the bar throughout its secular evolution. Here, we analyse the orbital structure on three stellar disc N-body models embedded in a live dark matter halo. During the evolution of the models, discs naturally form a bar that buckles out of the galactic plane at different ages of the galaxy evolution generating boxy, X, peanut, and/or elongated shapes. To understand how the orbit families hold the bar structure, we evaluate the orbital evolution using the frequency analysis on phase space coordinates for all disc particles at different time intervals. We analyse the density maps morphology of the 2:1 family as the bar potential evolves. We showed that the families of orbits providing bar support exhibit variations during different stages of its evolutionary process, specifically prior to and subsequent to the buckling phase, likewise in the secular evolution of the bar. The disc-dominated model develops an internal boxy structure after the first Gyr. Afterwards, the outer part of the disc evolves into a peanut-shape, which lasts till the end of the simulation. The intermediary model develops the boxy structure only after 2 Gyr of evolution. The peanut shape appears 2 Gyr later and evolves slowly. The halo-dominated model develops the boxy structure much later, around 3 Gyr, and the peanut morphology is just incipient at the end of the simulation.

Funder

DGAPA, UNAM

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3