Modelling the Milky Way – I. Method and first results fitting the thick disc and halo with DES-Y3 data

Author:

Pieres A12ORCID,Girardi L13ORCID,Balbinot E4ORCID,Santiago B15,da Costa L N12,Carnero Rosell A16ORCID,Pace A B7ORCID,Bechtol K8,Groenewegen M A T9,Drlica-Wagner A1011,Li T S1011ORCID,Maia M A G12,Ogando R L C12ORCID,dal Ponte M15,Diehl H T10,Amara A12,Avila S13ORCID,Bertin E1415,Brooks D16,Burke D L1718,Carrasco Kind M1920ORCID,Carretero J21,De Vicente J6ORCID,Desai S22,Eifler T F2324ORCID,Flaugher B10,Fosalba P2526,Frieman J1011,García-Bellido J13,Gaztanaga E2526ORCID,Gerdes D W2728,Gruen D171829ORCID,Gruendl R A1920,Gschwend J12,Gutierrez G10,Hollowood D L30,Honscheid K3132,James D J33,Kuehn K34,Kuropatkin N10,Marshall J L7,Miquel R2135,Plazas A A36ORCID,Sanchez E6,Serrano S2526,Sevilla-Noarbe I6,Sheldon E37,Smith M38ORCID,Soares-Santos M39ORCID,Sobreira F140,Suchyta E41ORCID,Swanson M E C20,Tarle G28,Thomas D42ORCID,Vikram V43,Walker A R44

Affiliation:

1. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil

2. Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil

3. Osservatorio Astronomico di Padova, INAF, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

4. Kapteyn Astronomical Institute, University of Groningen, Landleven 12, NL-9747 AD Groningen, the Netherlands

5. Instituto de Física, UFRGS, Caixa Postal 15051, Porto Alegre, RS - 91501-970, Brazil

6. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain

7. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

8. LSST 933 North Cherry Avenue, Tucson, AZ 85721, USA

9. Koninklijke Sterrenwacht van België, Ringlaan 3, B-1180 Brussels, Belgium

10. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA

11. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

12. Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland

13. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

14. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France

15. Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France

16. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK

17. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA

18. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

19. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA

20. National Centre for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA

21. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain

22. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

23. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

24. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

25. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

26. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

27. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

28. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

29. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

30. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

31. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

32. Department of Physics, The Ohio State University, Columbus, OH 43210, USA

33. Harvard-Smithsonian Centre for Astrophysics, Cambridge, MA 02138, USA

34. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

35. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

36. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

37. Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA

38. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

39. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA

40. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil

41. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

42. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

43. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

44. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile

Abstract

ABSTRACT We present a technique to fit the stellar components of the Galaxy by comparing Hess Diagrams (HDs) generated from trilegal models to real data. We apply this technique, which we call mwfitting, to photometric data from the first 3 yr of the Dark Energy Survey (DES). After removing regions containing known resolved stellar systems such as globular clusters, dwarf galaxies, nearby galaxies, the Large Magellanic Cloud, and the Sagittarius Stream, our main sample spans a total area of ∼2300 deg2. We further explore a smaller subset (∼1300 deg2) that excludes all regions with known stellar streams and stellar overdensities. Validation tests on synthetic data possessing similar properties to the DES data show that the method is able to recover input parameters with a precision better than 3 per cent. We fit the DES data with an exponential thick disc model and an oblate double power-law halo model. We find that the best-fitting thick disc model has radial and vertical scale heights of 2.67 ± 0.09 kpc and 925 ± 40 pc, respectively. The stellar halo is fit with a broken power-law density profile with an oblateness of 0.75 ± 0.01, an inner index of 1.82 ± 0.08, an outer index of 4.14 ± 0.05, and a break at 18.52 ± 0.27 kpc from the Galactic centre. Several previously discovered stellar overdensities are recovered in the residual stellar density map, showing the reliability of mwfitting in determining the Galactic components. Simulations made with the best-fitting parameters are a promising way to predict Milky Way star counts for surveys such as the LSST and Euclid.

Funder

U.S. Department of Energy

National Science Foundation

Science and Technology Facilities Council

Higher Education Funding Council for England

Centre for Cosmology and AstroParticle Physics

Financiadora de Estudos e Projetos

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Ministério da Ciência, Tecnologia e Inovação

Deutsche Forschungsgemeinschaft

Argonne National Laboratory

University of California, Santa Cruz

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

University of Chicago

University College London

University of Edinburgh

Eidgenössische Technische Hochschule Zürich

University of Illinois at Urbana-Champaign

Lawrence Berkeley National Laboratory

Ludwig-Maximilians-Universität München

University of Michigan

University of Nottingham

Ohio State University

University of Pennsylvania

University of Portsmouth

SLAC National Accelerator Laboratory

Stanford University

University of Sussex

Ministerio de Economía y Competitividad

Generalitat de Catalunya

H2020 European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3