Reference wavelengths of Si ii, C ii, Fe i, and Ni ii for quasar absorption spectroscopy

Author:

Nave Gillian1ORCID,Clear Christian2ORCID

Affiliation:

1. National Institute of Standards and Technology, Gaithersburg MD 20899, USA

2. Imperial College London, Prince Consort Road, London SW7 2AZ, UK

Abstract

ABSTRACT Wavelengths of absorption lines in the spectra of galaxies along the line of sight to distant quasars can be used to probe the variablility of the fine structure constant, α, at high redshifts, provided that the laboratory wavelengths are known to better than 6 parts in 108, corresponding to a radial velocity of ≈20 ms−1. For several lines of Si ii, C ii, Fe i, and Ni ii, previously published wavelengths are inadequate for this purpose. Improved wavelengths for these lines were derived by re-analysing archival Fourier transform (FT) spectra of iron hollow cathode lamps (HCL), a silicon carbide Penning discharge lamp, and with new spectra of nickel HCLs. By reoptimizing the energy levels of Fe i, the absolute uncertainty of 13 resonance lines has been reduced by over a factor of 2. A similar analysis for Si ii gives improved values for 45 lines with wavelength uncertainties over an order of magnitude smaller than previous measurements. Improved wavelengths for eight lines of Ni ii were measured and Ritz wavelengths from optimized energy levels determined for an additional three lines at shorter wavelengths. Three lines of C ii near 135 nm were observed using FT spectroscopy and the wavelengths confirm previous measurements.

Funder

National Aeronautics and Space Administration

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurement of Fe emission spectrum from 170 nm to 600 nm with a coma-free spectrometer;Journal of Analytical Atomic Spectrometry;2024

2. The Laboratory Astrophysics Programme at Imperial College London;The European Physical Journal D;2023-06

3. Critically Evaluated Spectral Data for Singly Ionized Carbon (C ii);The Astrophysical Journal Supplement Series;2022-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3