The BarYon Cycle project (ByCycle): identifying and localizing Mg ii metal absorbers with machine learning

Author:

Szakacs Roland1,Péroux Céline12ORCID,Nelson Dylan3ORCID,Zwaan Martin A1,Grün Daniel4ORCID,Weng Simon1567ORCID,Fresco Alejandra Y8ORCID,Bollo Victoria1,Casavecchia Benedetta9

Affiliation:

1. European Southern Observatory (ESO) , Karl-Schwarzschild-Str. 2, D-85748 Garching bei München , Germany

2. CNRS, Aix Marseille Université, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille, France

3. Zentrum für Astronomie, Institut für theoretische Astrophysik, Universitat Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany

4. Faculty of Physics, University Observatory Munich, Ludwig-Maximilians-Universität München , Scheinerstr. 1, D-81679 Munich , Germany

5. Sydney Institute for Astronomy, School of Physics, University of Sydney , NSW 2006 , Australia

6. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) , 2611, Australia

7. ATNF, CSIRO Astronomy and Space Science , PO Box 76, Epping, NSW 1710 , Australia

8. Max-Planck-Institut für Extraterrestrische Physik (MPE) , Giessenbachstr. 1, D-85748 Garching bei München , Germany

9. Max Planck Institute for Astrophysics (MPA) , Karl-Schwarzschild-Str. 1, D-85740 Garching bei München , Germany

Abstract

ABSTRACT The upcoming ByCycle project on the VISTA/4MOST multi-object spectrograph will offer new prospects of using a massive sample of ∼1 million high spectral resolution (R = 20 000) background quasars to map the circumgalactic metal content of foreground galaxies (observed at R = 4000–7000), as traced by metal absorption. Such large surveys require specialized analysis methodologies. In the absence of early data, we instead produce synthetic 4MOST high-resolution fibre quasar spectra. To do so, we use the TNG50 cosmological magnetohydrodynamical simulation, combining photo-ionization post-processing and ray tracing, to capture Mg ii (λ2796, λ2803) absorbers. We then use this sample to train a convolutional neural network (CNN) which searches for, and estimates the redshift of, Mg ii absorbers within these spectra. For a test sample of quasar spectra with uniformly distributed properties ($\lambda _{\rm {Mg\, {\small II},2796}}$, $\rm {EW}_{\rm {Mg\, {\small II},2796}}^{\rm {rest}} = 0.05\!-\!5.15$ Å, $\rm {SNR} = 3\!-\!50$), the algorithm has a robust classification accuracy of 98.6 per cent and a mean wavelength accuracy of 6.9 Å. For high signal-to-noise (SNR) spectra ($\rm {SNR \gt 20}$), the algorithm robustly detects and localizes Mg ii absorbers down to equivalent widths of $\rm {EW}_{\rm {Mg\, {\small II},2796}}^{\rm {rest}} = 0.05$ Å. For the lowest SNR spectra ($\rm {SNR=3}$), the CNN reliably recovers and localizes EW$_{\rm {Mg\, {\small II},2796}}^{\rm {rest}}$ ≥0.75 Å absorbers. This is more than sufficient for subsequent Voigt profile fitting to characterize the detected Mg ii absorbers. We make the code publicly available through GitHub. Our work provides a proof-of-concept for future analyses of quasar spectra data sets numbering in the millions, soon to be delivered by the next generation of surveys.

Funder

IMPRS

ESO

Deutsche Forschungsgemeinschaft

DFG

Australian Research Council

International Space Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3