A Lagrangian construction of rotating star models

Author:

Ogata Misa1,Okawa Hirotada2,Fujisawa Kotaro3,Yasutake Nobutoshi45,Yamamoto Yu1,Yamada Shoichi1

Affiliation:

1. Research Institute for Science and Engineering, Waseda University , Tokyo 169-8555, Japan

2. Waseda Institute for Advanced Study (WIAS) , 1-21-1 Nishi Waseda, Shinjuku, Tokyo 169-0051, Japan

3. Department of Physics, Graduate School of Science, The University of Tokyo , Bunkyo-ku, Tokyo 113-0033, Japan

4. Physics Department, Chiba Institute of Technology , Chiba 275-0023, Japan

5. Advanced Science Research Center, Japan Atomic Energy Agency , Tokai, Ibaraki 319-1195, Japan

Abstract

ABSTRACTWe present a new formulation for numerically obtaining axisymmetric equilibrium structures of rotating stars in two spatial dimensions. With a view to apply it to the secular evolution of rotating stars, we base it on the Lagrangian description, i.e. we solve the force-balance equations to find the spatial positions of fluid elements endowed individually with a mass, specific entropy and angular momentum. The system of non-linear equations obtained by finite-differencing the basic equations is solved with the W4 method, which is a new multidimensional root-finding scheme of our own devising. We augment it with a remapping scheme to avoid distortions of the Lagrangian coordinates. In this first one of a series of papers, we will give a detailed description of these methods initially. We then present the results of some test calculations, which include the construction of both rapidly rotating barotropic and baroclinic equilibrium states. We gauge their accuracies quantitatively with some diagnostic quantities as well as via comparisons with the counterparts obtained with an Eulerian code. For a demonstrative purpose, we apply the code to a toy-model cooling calculation of a rotating white dwarf.

Funder

JSPS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fate of supernova progenitors in massive binary systems;Monthly Notices of the Royal Astronomical Society;2024-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3