Modelling the tightest relation between galaxy properties and dark matter halo properties from hydrodynamical simulations of galaxy formation

Author:

He Jian-hua12ORCID

Affiliation:

1. School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China

2. Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

Abstract

ABSTRACT We investigate how a property of a galaxy correlates most tightly with a property of its host dark matter halo, using state-of-the-art hydrodynamical simulations of galaxy formation: EAGLE, Illustris, and IllustrisTNG. Unlike most of the previous work, our analyses focus on all types of galaxies, including both central and satellite galaxies. We find that the stellar mass of a galaxy at the epoch of the peak circular velocity with an evolution correction gives the tightest such correlation to the peak circular velocity Vpeak of the galaxy’s underling dark matter halo. The evolution of galaxy stellar mass reduces rather than increases scatter in such a relation. We also find that one major source of scatter comes from star stripping due to the strong interactions between galaxies. Even though, we show that the size of scatter predicted by hydrodynamical simulations has a negligible impact on the clustering of dense Vpeak-selected subhalo from simulations, which suggests that even the simplest subhalo abundance matching (SHAM), without scatter and any additional free parameter, can provide a robust prediction of galaxy clustering that can agree impressively well with the observations from the Sloan Digital Sky Survey (SDSS) main galaxy survey.

Funder

Nanjing University

STFC

Durham University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observational evidence of evolving dark matter profiles atz ≤ 1;Astronomy & Astrophysics;2022-03

2. Large-scale dark matter simulations;Living Reviews in Computational Astrophysics;2022-02-11

3. An Improved and Physically Motivated Scheme for Matching Galaxies with Dark Matter Halos;The Astrophysical Journal;2021-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3