Inferring the parallax of Westerlund 1 from Gaia DR2

Author:

Aghakhanloo Mojgan1ORCID,Murphy Jeremiah W1,Smith Nathan2,Parejko John3,Díaz-Rodríguez Mariangelly1ORCID,Drout Maria R4,Groh Jose H5,Guzman Joseph1,Stassun Keivan G67ORCID

Affiliation:

1. Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306, USA

2. Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA

3. Department of Astronomy , University of Washington, Box 351580, Seattle, WA 98195, USA

4. The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101, USA

5. School of Physics, Trinity College Dublin, The University of Dublin, Dublin, Ireland

6. Department of Physics & Astronomy, Vanderbilt University, 6301 Stevenson Center Lane, Nashville, TN 37235, USA

7. Department of Physics, Fisk University, 1000 17th Avenue N., Nashville, TN 37208, USA

Abstract

ABSTRACT Westerlund 1 (Wd1) is potentially the largest star cluster in the Galaxy. That designation critically depends upon the distance to the cluster, yet the cluster is highly obscured, making luminosity-based distance estimates difficult. Using Gaia Data Release 2 (DR2) parallaxes and Bayesian inference, we infer a parallax of $0.35^{+0.07}_{-0.06}$ mas corresponding to a distance of $2.6^{+0.6}_{-0.4}$ kpc. To leverage the combined statistics of all stars in the direction of Wd1, we derive the Bayesian model for a cluster of stars hidden among Galactic field stars; this model includes the parallax zero-point. Previous estimates for the distance to Wd1 ranged from 1.0 to 5.5 kpc, although values around 5 kpc have usually been adopted. The Gaia DR2 parallaxes reduce the uncertainty from a factor of 3 to 18 per cent and rules out the most often quoted value of 5 kpc with 99 per cent confidence. This new distance allows for more accurate mass and age determinations for the stars in Wd1. For example, the previously inferred initial mass at the main-sequence turn-off was around 40 M⊙; the new Gaia DR2 distance shifts this down to about 22 M⊙. This has important implications for our understanding of the late stages of stellar evolution, including the initial mass of the magnetar and the LBV in Wd1. Similarly, the new distance suggests that the total cluster mass is about four times lower than previously calculated.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3