Homogeneously derived transit timings for 17 exoplanets and reassessed TTV trends for WASP-12 and WASP-4

Author:

Baluev R V12ORCID,Sokov E N12,Jones H R A3,Shaidulin V Sh1ORCID,Sokova I A12,Nielsen L D4ORCID,Benni P5,Schneiter E M6,Villarreal D’Angelo C7,Fernández-Lajús E89,Di Sisto R P89,Baştürk Ö10,Bretton M11,Wunsche A11,Hentunen V-P12,Shadick S13,Jongen Y14,Kang W15,Kim T1516,Pakštienė E17,Qvam J K T18,Knight C R19,Guerra P20,Marchini A21,Salvaggio F21,Papini R21,Evans P22,Salisbury M23,Garcia F24,Molina D25,Garlitz J26,Esseiva N27,Ogmen Y28,Karavaev Yu29,Rusov S2,Ibrahimov M A30,Karimov R G31

Affiliation:

1. Faculty of Mathematics & Mechanics, Saint Petersburg State University, Universitetskij pr. 28, Petrodvorets, St Petersburg 198504, Russia

2. Central Astronomical Observatory at Pulkovo of Russian Academy of Sciences, Pulkovskoje sh. 65/1, St Petersburg 196140, Russia

3. Centre for Astrophysics Research, STRI, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK

4. Geneva Observatory, University of Geneva, Chemin des Mailettes 51, CH-1290 Versoix, Switzerland

5. Acton Sky Portal (Private Observatory), Acton, MA, USA

6. Instituto de Astronomía Teoríca y Experimental, Universidad Nacional de Córdoba, Laprida 854, Córdoba X5000BGR, Argentina

7. School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland

8. Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, La Plata 1900, Argentina

9. Instituto de Astrofísica de La Plata (CCT La Plata – CONICET/UNLP), La Plata, Argentina

10. Department of Astronomy and Space Science, Faculty of Science, Ankara University, TR-06100 Tandogan, Ankara, Turkey

11. Baronnies Provençales Observatory, Hautes Alpes – Parc Naturel Régional des Baronnies Provençales, F-05150 Moydans, France

12. Taurus Hill Observatory, Warkauden Kassiopeia ry., Härkämäentie 88, FI-79480 Kangaslampi, Finland

13. Physics and Engineering Physics Department, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2, Canada

14. Observatoire de Vaison la Romaine, 1075 RD 51, Le Palis, F-84110 Vaison-la-Romaine, France

15. National Youth Space Center, Goheung, Jeollanam-do 59567, South Korea

16. Department of Astronomy and Space Science, Chungbuk National University, Cheongju 28644, South Korea

17. Institute of Theoretical Physics and Astronomy, Vilnius University, Sauletekio al. 3, Vilnius 10257, Lithuania

18. Horten Videregående Skole, Bekkegata 2, 3181 Horten, Norway

19. Ngileah Observatory, 144 Kilkern Road, RD 1, Bulls 4894, New Zealand

20. Observatori Astronòmic Albanyà, Camí de Bassegoda s/n, E-17733 Albanyà, Spain

21. Astronomical Observatory, DSFTA – University of Siena, Via Roma 56, I-53100 Siena, Italy

22. El Sauce Observatory, Río Hurtado, Coquimbo, Chile

23. School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK

24. La Vara, Valdes Observatory, E-33784 Munas de Arriba, Valdes, Asturias, Spain

25. Anunaki Observatory, Calle de los Llanos, E-28410 Manzanares el Real, Spain

26. AAVSO (Private Observatory), Elgin, OR 97827, USA

27. Observatory Saint Martin, Code k27, Amathay Vesigneux, France

28. Green Island Observatory, Code B34, Gecitkale, Famagusta, North Cyprus

29. Institute of Solar-Terrestrial Physics (ISTP), Russian Academy of Sciences (Siberian Branch), p.b. 291, Lermontov Street 126a, Irkutsk 664033, Russia

30. Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya Str 48, Moscow 119017, Russia

31. Ulugh Beg Astronomical Institute of Uzbek Academy of Sciences, Astronomicheskaya Str 33, Tashkent 100052, Uzbekistan

Abstract

ABSTRACT We homogeneously analyse ∼3.2 × 105 photometric measurements for ∼1100 transit light curves belonging to 17 exoplanet hosts. The photometric data cover 16 years (2004–2019) and include amateur and professional observations. Old archival light curves were reprocessed using up-to-date exoplanetary parameters and empirically debiased limb-darkening models. We also derive self-consistent transit and radial-velocity fits for 13 targets. We confirm the non-linear transit timing variation (TTV) trend in the WASP-12 data at a high significance, and with a consistent magnitude. However, Doppler data reveal hints of a radial acceleration of about −7.5 ± 2.2 m s−1 yr−1, indicating the presence of unseen distant companions, and suggesting that roughly 10 per cent of the observed TTV was induced via the light-travel (or Roemer) effect. For WASP-4, a similar TTV trend suspected after the recent TESS observations appears controversial and model dependent. It is not supported by our homogeneous TTV sample, including 10 ground-based EXPANSION light curves obtained in 2018 simultaneously with TESS. Even if the TTV trend itself does exist in WASP-4, its magnitude and tidal nature are uncertain. Doppler data cannot entirely rule out the Roemer effect induced by possible distant companions.

Funder

Russian Science Foundation

Scientific and Technological Research Council of Turkey

Research Council of Lithuania

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3